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It is shown here that a subset of the implicit analytical shock solutions discovered by
Becker and by Johnson can be inverted, yielding several exact, closed-form solutions of
the one-dimensional, compressible Navier-Stokes equations for an ideal gas. For a con-
stant dynamic viscosity and/or thermal conductivity, and at particular values of the
shock Mach number, the velocity can be expressed in terms of a polynomial root. For a
constant kinematic viscosity, independent of Mach number, the velocity can be expressed
in terms of a hyperbolic tangent function. The remaining fluid variables are related to
the velocity through simple algebraic expressions. The solutions derived here make ex-
cellent verification tests for numerical algorithms, since no source terms in the evolution
equations are approximated, and the closed-form expressions are straightforward to im-
plement. The solutions are also of some academic interest as they may provide insight
into the non-linear character of the Navier-Stokes equations.
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1. Introduction

One of the few known non-linear analytical solutions to the equations of fluid dynamics
was discovered by Becker (1922) and subsequently analyzed by Thomas (1944), Mordu-
chow & Libby (1949), Hayes (1960) and Iannelli (2013). It captures the physical profile
of shock fronts in ideal gases, and although it requires some restrictive assumptions (a
steady-state, one planar dimension, constant dynamic viscosity, an ideal gas equation of
state, and a constant Prandtl number Pr of 3/4), the solution is exact in the sense that no
source terms in the (one-dimensional) evolution equations are neglected or approximated.
Analogous solutions were discovered by Johnson (2013) in the limit of both large and
small Pr . These solutions provide a useful framework for verifying numerical algorithms
used to solve the Navier-Stokes equations. A drawback, however, from the perspective of
both physical intuition and numerical implementation, is that the solutions are implicit,
i.e., they are solutions for x(v) rather than closed-form expressions for v(x) (x here is the
spatial dimension in which the shock propagates and v is the velocity in that direction).

It is shown here that some of these implicit solutions can be inverted for particular
values of the shock Mach number, yielding closed-form expressions for the fluid velocity
as a function of position. In particular, for rational values of the shock compression ratio,
Becker’s implicit expression is a polynomial in v(x). Expressions for the polynomial root
relevant to a shock are provided up to a compression ratio of four. Polynomial solutions
also exist in both the large and small Pr limits under the assumption of either a constant
dynamic viscosity or constant thermal conductivity, and expressions are provided for
these as well. Under the assumption of a constant kinematic (rather than dynamic)
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viscosity, the solution for v(x) takes the particularly simple form of a hyperbolic tangent
function; this solution is valid at any Mach number and for both Pr → ∞ and Pr → 3/4.

An overview of the equations to be solved are given in §2, the solutions are given in
§3, and a summary is given in §4.

2. Equations

In one planar dimension and a steady-state, the compressible Navier-Stokes equations
reduce to the following ordinary differential equations:

4µ

3m0

v
dv

dx
= v2 +

γ − 1

γ
h − γ + 1

2γ
(v0 + v1) v, (2.1)

κ

m0Cp

dh

dx
=

h

γ
− v2

2
+

γ + 1

2γ
(v0 + v1) v − γ + 1

γ − 1

v0v1

2
, (2.2)

where ρ is the mass density, v is the velocity magnitude in the x direction, h = e+p/ρ is
the fluid enthalpy, p is the pressure, e is the internal energy, µ is the dynamic viscosity (in
the limit of negligible bulk viscosity; otherwise µ is the sum of the dynamic viscosity and
3/4 the bulk viscosity), κ is the thermal conductivity and m0 = ρv = ρ0v0 is the mass flux
(Becker 1922; Zel’dovich & Raizer 2002; Johnson 2013). It has been assumed here that the
fluid obeys an ideal gas equation of state, p = (γ − 1) ρe, so that h = γe = CpT , where
Cp is the specific heat at constant pressure, T is the temperature, and γ = Cp/Cv is the
adiabatic index (Cv is the specific heat at constant volume). The integration constants
in equations (2.1) and (2.2) have been expressed in terms of both pre-shock (denoted by
a subscript “0”) and post-shock (denoted by a subscript “1”) velocities using the shock
compression ratio:

R ≡ ρ1

ρ0

=
γ + 1

γ − 1 + 2/M2

0

, (2.3)

where M2

0
= v2

0
/c2

0
is the shock Mach number and c0 =

√

γp0/ρ0 is the adiabatic sound
speed in the ambient fluid (Landau & Lifshitz 1987). The Prandtl number is given by
Pr ≡ µCp/κ.

3. Solutions

3.1. Becker (Pr = 3/4) solution

For Pr = 3/4, equations (2.1) and (2.2) can be reduced to the quadrature (Becker 1922)

x =
2Lκ

γ + 1

∫

(κ/κ0) η

(η − 1) (η − η1)
dη, (3.1)

and the algebraic expression

T

T0

=
γ − 1

2
M2

0

(

γ + 1

γ − 1
η1 − η2

)

. (3.2)

Here η ≡ v/v0, η1 ≡ v1/v0 = R−1, and Lκ ≡ κ0/(m0Cv) is the ambient conductive
length scale. For constant κ = κ0, the integral (3.1) is given by (to within an arbitrary
constant)

x =
2Lκ

γ + 1
ln

[

(1 − η)
1

1−η1 (η − η1)
−

η1

1−η1

]

, (3.3)
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R M2

0 Equation

4/3 8/(7 − γ) δ4 − f
`

δ3 + 3δ2/4 + 3δ/16 + 1/64
´

= 0
3/2 6/(5 − γ) δ3 + f

`

δ2 + 2δ/3 + 1/9
´

= 0
2 4/(3 − γ) δ2 − f (δ + 1/2) = 0
3 3/(2 − γ) δ3 + f2 (δ + 2/3) = 0
4 8/(5 − 3γ) δ4 − f3 (δ + 3/4) = 0

Table 1. Pr = 3/4 and Pr = ∞ polynomials
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Figure 1. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr = 3/4 solutions with R = 4/3 (left) and R = 3/2 (right).

which is in turn equivalent to

(δ − δ1) fR−1 = (−δ)
R

, (3.4)

where δ ≡ η − 1, δ1 ≡ η1 − 1 = R−1 − 1,

f ≡ ex/w, (3.5)

and

w ≡ 2L

γ + 1
. (3.6)

Here L = Lκ, but expression (3.6) is kept general for use in later sections.
For rational values of R, equation (3.4) is a polynomial in δ(x). Values for R that

yield closed-form expressions for v(x) are listed in table 1, the corresponding closed-
form expressions for η are given in the appendix, and plots of the density, temperature
and a proxy for the entropy (s ≡ Tηγ−1) are shown in figures 1–3. Plotted quantities
are all normalized to their ambient values, and the x-values have been scaled to M0Lµ

(= M0Lκ/γ for Pr = 3/4), as this is a length scale that is independent of the shock Mach
number. Table 1 also gives the curves in M0–γ space for which the closed-form solutions
are valid. These can be obtained by solving expression (2.3) for M0:

M0 =

√

2R

R + 1 − γ(R − 1)
(3.7)



4 B. M. Johnson

−10 −5 0 5 10
x/(M0Lµ)

1.0

1.2

1.4

1.6

1.8

2.0

−6 −4 −2 0 2 4 6
x/(M0Lµ)

1.0

1.5

2.0

2.5

3.0

Figure 2. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr = 3/4 solutions with R = 2 (left) and R = 3 (right).
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Figure 3. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for a Pr = 3/4 solution (left) and a Pr = ∞ solution (right) with R = 4.

3.2. Large-Pr solution

For Pr → ∞, equations (2.1) and (2.2) can be reduced to the quadrature (Johnson 2013)

x =
2Lµ

γ + 1

∫

(µ/µ0) η

(η − 1) (η − η1)
dη, (3.8)

where Lµ ≡ 4µ0/(3m0) is the ambient viscous length scale, and the algebraic expression

T = T0

γ(γ − 1)M2

0

2

(

η2 − 4ηiη +
γ + 1

γ − 1
η1

)

, (3.9)

where

ηi ≡
γ + 1

4γ
(1 + η1) . (3.10)

For constant µ = µ0, the integral (3.8) is given by (to within an arbitrary constant)

x =
2Lµ

γ + 1
ln

[

(1 − η)
1

1−η1 (η − η1)
−

η1

1−η1

]

. (3.11)
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Comparing expression (3.11) with (3.3), it can be seen that the solutions for η in this limit
are the same as those of the previous section with L = Lµ in expression (3.6). Figure 3
compares the large-Pr solution with R = 4 to the corresponding Pr = 3/4 solution.
Notice that the entropy has no local maximum in this limit (it increases monotonically
from pre- to post-shock). This can be seen from

d lnT

dx
+ (γ − 1)

d ln η

dx
= 0 → η2 − (1 + η1) η + η1 = 0, (3.12)

which is solved by η = 1 and η = η1; the entropy has zero slope only at the boundaries.

3.3. Small-Pr solution

For Pr → 0, equations (2.1) and (2.2) can be reduced to the quadrature (Johnson 2013)

x =
4Lκ

γ + 1

∫

(κ/κ0) (η − ηi)

(η − 1) (η − η1)
dη, (3.13)

and the algebraic expression

T = T0γM2

0
η (2ηi − η) . (3.14)

For constant κ = κ0, the integral (3.13) is given by (to within an arbitrary constant)

x =
4Lκ

γ + 1
ln

[

(1 − η)
1−ηi
1−η1 (η − η1)

ηi−η1

1−η1

]

, (3.15)

which is in turn equivalent to

f |n−1|/2 (δ − δ1) = (−δ)n , (3.16)

where

n ≡ ηi − 1

ηi − η1

=
(γ + 1)(1 − γM2

0 )

1 − 3γ + (3 − γ)γM2

0

, (3.17)

f is defined in expression (3.5), and L = Lκ in expression (3.6). For M2
0 > 1, 1 < |n| < ∞.

For rational values of n, equation (3.16) is a polynomial in δ(x). Values for n that
yield closed-form expressions for v(x) are listed in table 2, the corresponding closed-form
expressions for η are given in the appendix, and plots of the density, temperature and a
proxy for the entropy are shown in figures 4–7. Plotted quantities are again normalized
to their ambient values, and the x-values have been scaled to M0Lκ. Table 2 also gives
the curves in M0–γ space for which the closed-form solutions are valid. These can be
obtained by solving expression (3.17) for M0:

M0 =

√

αγ − 1

γ(α − γ)
, α ≡ 3n + 1

n − 1
. (3.18)

In terms of α,

δ1 = −2
γ − 1

αγ − 1
. (3.19)

For M0 > Mc, where

Mc ≡
√

3γ − 1

γ (3 − γ)
(3.20)

(this is equivalent to α < 3 or n < 0), the solution in this limit is discontinuous (Zel’dovich
& Raizer 2002; Johnson 2013). For M0 = Mc, n = ±∞, ηi = η1, and equation (3.16)
reduces to f1/2 = −δ, or η = 1 − f1/2. This solution is valid until η = η1, where there
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Figure 4. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr = 0 solutions with n = 4/3 (left) and n = 3/2 (right).
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Figure 5. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr = 0 solutions with n = 2 (left) and n = 3 (right).

n α M2

0 Equation

-3 2 (2γ − 1)/(γ[2 − γ]) δ4 − δ1δ
3 + f2 = 0

-2 5/3 (5γ − 3)/(γ[5 − 3γ]) δ3 − δ1δ
2 − f3/2 = 0

4/3 15 (15γ − 1)/(γ[15 − γ]) δ4 + f1/2
`

−δ3 + 3δ1δ
2 − 3δ2

1δ + δ3

1

´

= 0

3/2 11 (11γ − 1)/(γ[11 − γ]) δ3 + f1/2
`

δ2 − 2δ1δ + δ2

1

´

= 0

2 7 (7γ − 1)/(γ[7 − γ]) δ2 + f1/2 (−δ + δ1) = 0
3 5 (5γ − 1)/(γ[5 − γ]) δ3 + f (δ − δ1) = 0

4 13/3 (13γ − 3)/(γ[13 − 3γ]) δ4 + f3/2 (−δ + δ1) = 0

∞ 3 (3γ − 1)/(γ[3 − γ]) δ + f1/2 = 0

Table 2. Pr = 0 polynomials
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Figure 6. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr = 0 solutions with n = 4 (left) and n = ∞ (right).
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Figure 7. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr = 0 solutions with n = −3 (left) and n = −2 (right).

is a weak discontinuity in both velocity and temperature. The weak discontinuity in the
temperature occurs above the first derivative, since dT/dx ∝ ηi − η = 0 at η = ηi.

3.4. Constant kinematic viscosity

For a constant kinematic viscosity, ν ≡ µ/ρ = ν0, the integrals (3.1) and (3.8) both
reduce to

x = w

∫

dη

(η − 1) (η − η1)
=

w

1 − η1

ln

(

1 − η

η − η1

)

, (3.21)

which can be solved for η to give

η = σ (−z) + η1 σ (z) , (3.22)

where

σ(z) ≡ 1

1 + e−z
, z ≡ x

w
(1 − η1) =

x

L

(

1 − M−2

0

)

.
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Figure 8. Curves of density (solid), temperature (dashed) and a proxy for the entropy (dotted)
for a Pr = 3/4 solution (left) and a Pr = ∞ solution (right) with constant ν and M0 = 3.

An equivalent expression for η is

η =
η1 + 1

2
+

η1 − 1

2
tanh

(z

2

)

. (3.23)

This solution is valid for both Pr = 3/4, in which case L = Lκ = γLµ and T is given
by expression (3.2), and Pr = ∞, in which case L = Lµ and T is given by expression
(3.9). Plots of the density, temperature and a proxy for the entropy (normalized to their
ambient values) are shown in figure 8 for both Pr = 3/4 and Pr = ∞.

4. Summary

Several closed-form analytical solutions to the one-dimensional compressible Navier-
Stokes equations have been derived in the limit of a steady-state and an ideal-gas equation
of state. Solutions with a constant dynamic viscosity and/or thermal conductivity can
be obtained by solving a polynomial equation. Polynomial solutions valid for large Pr

and Pr = 3/4 are listed in table 1 and shown in figures 1–3. Polynomial solutions valid
for small Pr and listed in table 2 and shown in figures 4–7. Tables 1 and 2 also give
expressions for M0(γ) for which these solutions are valid, and the corresponding curves
in M0–γ space are shown in figure 9. A solution can also be obtained under the assumption
of a constant kinematic viscosity, valid for either large Pr or a constant Pr = 3/4 and
at any Mach number; this solution is described in §3.4 and shown in figure 8.

The derived solutions are non-linear and exact in the sense that no source terms
in the evolution equations are neglected or approximated. As such, they make excellent
verification tests for numerical algorithms. The solutions may also provide insight into the
non-linear character of the Navier-Stokes equations. The solution set is not exhaustive,
as additional polynomial solutions exist under the assumption of a constant thermal
diffusivity χ ≡ κ/ρ, and a solution in terms of Lambert functions can be derived for
µ ∝ T 1/2, Pr → ∞ and M0 → ∞. As none of these solutions are more physically-
relevant than the ones discussed above, their detailed derivation has not been included.

This work was performed under the auspices of Lawrence Livermore National Security,
LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
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Figure 9. Curves in M0–γ space for which the derived closed-form solutions are valid, for
R = 4/3, 3/2, 2, 3 and 4 (left, bottom to top), and for n = −3, −2, ∞, 4/3, 3/2, 2, 3 and 4
(right, top to bottom). On the right, a dashed line indicates a discontinuous solution, a dotted line
indicates a solution with a weak discontinuity, and a solid line indicates a continuous solution.

Appendix A

For the quadratic equations in tables 1 and 2 (δ2 + aδ + b = 0), the solution branch
relevant to a shock (the other solution branch grows exponentially as x → ∞) is given
by

η = 1 − a

2
−

√

(a

2

)2

− b. (A 1)

For the cubic equations in tables 1 and 2 (δ3 + aδ2 + bδ + c = 0), the shock solution is

η = 1 −
(a

3
+ A +

p

A

)

, (A 2)

where

A ≡
(

q +
√

q2 − p3

)
1

3

, p ≡
(a

3

)2

− b

3
, q ≡

(a

3

)3

− ab

6
+

c

2
.

For R = 3/2 and n = 3/2, the solution is given by expression (A 2) for f < fc, where fc

is given in table 3, and by

η = 1 + 2
√

p cos

(

θ − 2πk

3

)

− a

3
, θ ≡ cos−1

( −q

p3/2

)

(A 3)

for f > fc (with k = 0). For n = −2, the solution is given by expression (A 3) for f < fc

(with k = 1), and there is a discontinuity at f = fc where the solution transitions from
2ηi −η1 to η1 (Zel’dovich & Raizer 2002; Johnson 2013). Evaluating expression (A 3) can
be problematic as x → ∞ due to the subtraction of two large numbers that are nearly
equal. This can be seen in the right panel of figures 1 and 4, where a glitch in the density
appears near the post-shock region. The data for these plots (generated with numpy) was
noisy beyond this point and was replaced with post-shock values at infinity.

For the quartic equations in tables 1 and 2 (δ4 + aδ3 + bδ2 + cδ + d = 0), the shock
solution is

η = 1 − a

4
+

k

2
B − k

2

√

−B2 + 3r − s
k

B
, (A 4)
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Solution k fc

R = 4/3 1
R = 3/2 0 9/4
R = 4 1

n = −3 −1
`

δ1δ
3

i − δ4

i

´1/2

n = −2 1
`

δ3

i − δ1δ
2

i

´2/3

n = 4/3 1
n = 3/2 0 (27δ1/4)

2

n = 4 1
n = ∞ −δ1

Table 3. Branches and critical points

where

A ≡
(

q +
√

q2 − p3

)
1

3

, B ≡
√

r + A +
p

A
,

p ≡
(

b

3

)2

− ac

3
+

4d

3
, q ≡

(

b

3

)3

− abc

6
+

a2d

2
+

c2

2
− 4bd

3
,

r ≡
(a

2

)2

− 2

3
b, s ≡ a3

4
− ab + 2c ,

and the value for k is given in table 3. For n = −3, there is a discontinuity at f = fc

where the solution transitions from 2ηi − η1 to η1 (Zel’dovich & Raizer 2002; Johnson
2013).

The translational invariance of the equations allows one to multiply f by any constant
factor. To set the origin x = 0 at η = ηo, where η1 < ηo < 1 but is otherwise arbitrary,
multiply f by a scale factor S, where S is obtained from the relevant equation. For
example, the equation for R = 2 with f → Sf is

δ2 − Sf (δ + 1/2) = 0.

Since f = 1 at x = 0, this equation can be solved for S to give

S =
δ2
o

δo + 1/2
,

where δo = ηo − 1.
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